Paper List
-
Pharmacophore-based design by learning on voxel grids
This paper addresses the computational bottleneck and limited novelty in conventional pharmacophore-based virtual screening by introducing a voxel cap...
-
CONFIDE: Hallucination Assessment for Reliable Biomolecular Structure Prediction and Design
This paper addresses the critical limitation of current protein structure prediction models (like AlphaFold3) where high-confidence scores (pLDDT) can...
-
On the Approximation of Phylogenetic Distance Functions by Artificial Neural Networks
This paper addresses the core challenge of developing computationally efficient and scalable neural network architectures that can learn accurate phyl...
-
EcoCast: A Spatio-Temporal Model for Continual Biodiversity and Climate Risk Forecasting
This paper addresses the critical bottleneck in conservation: the lack of timely, high-resolution, near-term forecasts of species distribution shifts ...
-
Training Dynamics of Learning 3D-Rotational Equivariance
This work addresses the core dilemma of whether to use computationally expensive equivariant architectures or faster symmetry-agnostic models with dat...
-
Fast and Accurate Node-Age Estimation Under Fossil Calibration Uncertainty Using the Adjusted Pairwise Likelihood
This paper addresses the dual challenge of computational inefficiency and sensitivity to fossil calibration errors in Bayesian divergence time estimat...
-
Few-shot Protein Fitness Prediction via In-context Learning and Test-time Training
This paper addresses the core challenge of accurately predicting protein fitness with only a handful of experimental observations, where data collecti...
-
scCluBench: Comprehensive Benchmarking of Clustering Algorithms for Single-Cell RNA Sequencing
This paper addresses the critical gap of fragmented and non-standardized benchmarking in single-cell RNA-seq clustering, which hinders objective compa...
SSDLabeler: Realistic semi-synthetic data generation for multi-label artifact classification in EEG
Sony Computer Science Laboratories, Inc., Tokyo, Japan
The 30-Second View
IN SHORT: This paper addresses the core challenge of training robust multi-label EEG artifact classifiers by overcoming the scarcity and limited diversity of manually labeled training data through a novel semi-synthetic data generation framework.
Innovation (TL;DR)
- Methodology Introduces SSDLabeler, a framework that generates realistic semi-synthetic EEG data by simultaneously reinjecting multiple ICA-isolated artifact types into clean data, preserving the co-occurrence structure of real-world contamination.
- Methodology Develops a novel artifact verification step using RMS and PSD thresholding criteria at the epoch level to ensure the physiological plausibility of generated contaminations, moving beyond simple ICA component injection.
- Biology Proposes a multi-label artifact classification paradigm that identifies multiple co-occurring artifact types (eye, muscle, heart, line, channel, other) within single EEG epochs, providing transparent contamination information for flexible preprocessing decisions.
Key conclusions
- SSDLabeler-trained classifiers achieved the highest overall accuracy (0.839) on motor execution test data, significantly outperforming raw EEG training (0.772, p<0.05 for Clean, Eye, and Line categories) and prior SSD methods (0.788).
- On instructed-noise session data, the proposed method achieved 0.812 accuracy, demonstrating strong generalization with significant improvements over raw EEG (0.618, p<0.05 for Clean, Eye, and Channel categories) and prior SSD (0.756).
- The framework successfully captures artifact co-occurrence, with the classifier showing balanced performance across most artifact types, though muscle artifact detection remained challenging (accuracy 0.605 vs. 0.785 for prior SSD).
Abstract: EEG recordings are inherently contaminated by artifacts such as ocular, muscular, and environmental noise, which obscure neural activity and complicate preprocessing. Artifact classification offers advantages in stability and transparency, providing a viable alternative to ICA-based methods that enable flexible use alongside human inspections and across various applications. However, artifact classification is limited by its training data as it requires extensive manual labeling, which cannot fully cover the diversity of real-world EEG. Semi-synthetic data (SSD) methods have been proposed to address this limitation, but prior approaches typically injected single artifact types using ICA components or required separately recorded artifact signals, reducing both the realism of the generated data and the applicability of the method. To overcome these issues, we introduce SSDLabeler, a framework that generates realistic, annotated SSDs by decomposing real EEG with ICA, epoch-level artifact verification using RMS and PSD criteria, and reinjecting multiple artifact types into clean data. When applied to train a multi-label artifact classifier, it improved accuracy on raw EEG across diverse conditions compared to prior SSD and raw EEG training, establishing a scalable foundation for artifact handling that captures the co-occurrence and complexity of real EEG.