Paper List
-
Pharmacophore-based design by learning on voxel grids
This paper addresses the computational bottleneck and limited novelty in conventional pharmacophore-based virtual screening by introducing a voxel cap...
-
CONFIDE: Hallucination Assessment for Reliable Biomolecular Structure Prediction and Design
This paper addresses the critical limitation of current protein structure prediction models (like AlphaFold3) where high-confidence scores (pLDDT) can...
-
On the Approximation of Phylogenetic Distance Functions by Artificial Neural Networks
This paper addresses the core challenge of developing computationally efficient and scalable neural network architectures that can learn accurate phyl...
-
EcoCast: A Spatio-Temporal Model for Continual Biodiversity and Climate Risk Forecasting
This paper addresses the critical bottleneck in conservation: the lack of timely, high-resolution, near-term forecasts of species distribution shifts ...
-
Training Dynamics of Learning 3D-Rotational Equivariance
This work addresses the core dilemma of whether to use computationally expensive equivariant architectures or faster symmetry-agnostic models with dat...
-
Fast and Accurate Node-Age Estimation Under Fossil Calibration Uncertainty Using the Adjusted Pairwise Likelihood
This paper addresses the dual challenge of computational inefficiency and sensitivity to fossil calibration errors in Bayesian divergence time estimat...
-
Few-shot Protein Fitness Prediction via In-context Learning and Test-time Training
This paper addresses the core challenge of accurately predicting protein fitness with only a handful of experimental observations, where data collecti...
-
scCluBench: Comprehensive Benchmarking of Clustering Algorithms for Single-Cell RNA Sequencing
This paper addresses the critical gap of fragmented and non-standardized benchmarking in single-cell RNA-seq clustering, which hinders objective compa...
Emergent Bayesian Behaviour and Optimal Cue Combination in LLMs
Huawei Noah’s Ark Lab, London, UK | AI Centre, Department of Computer Science, University College London, London, UK
The 30-Second View
IN SHORT: This paper addresses the critical gap in understanding whether LLMs spontaneously develop human-like Bayesian strategies for processing uncertain information, revealing that high accuracy does not guarantee robust multimodal integration.
Innovation (TL;DR)
- Methodology Introduces BayesBench, the first psychophysics-inspired behavioral benchmark for LLMs with four magnitude estimation tasks (length, location, distance, duration) across text and image modalities.
- Methodology Develops Bayesian Consistency Score (BCS) to detect Bayes-consistent behavioral shifts even when accuracy saturates, enabling separation of capability from computational strategy.
- Biology Demonstrates emergent Bayesian behavior in capable LLMs without explicit training, with Llama-4 Maverick showing cue-combination efficiency exceeding human biological systems (RRE > 1 against Bayesian oracle).
Key conclusions
- GPT-5 Mini achieves perfect text accuracy (NRMSE ≈ 0) but fails to integrate visual cues efficiently, showing poor cue-combination efficiency (RRE < 1) despite high capability.
- Llama-4 Maverick demonstrates emergent Bayesian behavior with cue-combination efficiency exceeding Bayesian reliability-weighted baselines (RRE > 1), suggesting non-linear integration strategies.
- Bayesian Consistency Score reveals that more accurate models show stronger evidence of Bayesian behavior, with BCS positively correlated with accuracy across nine evaluated LLMs.
Abstract: Large language models (LLMs) excel at explicit reasoning, but their implicit computational strategies remain underexplored. Decades of psychophysics research show that humans intuitively process and integrate noisy signals using near-optimal Bayesian strategies in perceptual tasks. We ask whether LLMs exhibit similar behaviour and perform optimal multimodal integration without explicit training or instruction. Adopting the psychophysics paradigm, we infer computational principles of LLMs from systematic behavioural studies. We introduce a behavioural benchmark - BayesBench: four magnitude estimation tasks (length, location, distance, and duration) over text and image, inspired by classic psychophysics, and evaluate a diverse set of nine LLMs alongside human judgments for calibration. Through controlled ablations of noise, context, and instruction prompts, we measure performance, behaviour and efficiency in multimodal cue-combination. Beyond accuracy and efficiency metrics, we introduce a Bayesian Consistency Score that detects Bayes-consistent behavioural shifts even when accuracy saturates. Our results show that while capable models often adapt in Bayes-consistent ways, accuracy does not guarantee robustness. Notably, GPT-5 Mini achieves perfect text accuracy but fails to integrate visual cues efficiently. This reveals a critical dissociation between capability and strategy, suggesting accuracy-centric benchmarks may over-index on performance while missing brittle uncertainty handling. These findings reveal emergent principled handling of uncertainty and highlight the correlation between accuracy and Bayesian tendencies. We release our psychophysics benchmark and consistency metric as evaluation tools and to inform future multimodal architecture designs111Project webpage: https://bayes-bench.github.io.