Paper List
-
Simulation and inference methods for non-Markovian stochastic biochemical reaction networks
This paper addresses the computational bottleneck of simulating and performing Bayesian inference for non-Markovian biochemical systems with history-d...
-
Translating Measures onto Mechanisms: The Cognitive Relevance of Higher-Order Information
This review addresses the core challenge of translating abstract higher-order information theory metrics (e.g., synergy, redundancy) into defensible, ...
-
Emergent Bayesian Behaviour and Optimal Cue Combination in LLMs
This paper addresses the critical gap in understanding whether LLMs spontaneously develop human-like Bayesian strategies for processing uncertain info...
-
Vessel Network Topology in Molecular Communication: Insights from Experiments and Theory
This work addresses the critical lack of experimentally validated channel models for molecular communication within complex vessel networks, which is ...
-
Modulation of DNA rheology by a transcription factor that forms aging microgels
This work addresses the fundamental question of how the transcription factor NANOG, essential for embryonic stem cell pluripotency, physically regulat...
-
Imperfect molecular detection renormalizes apparent kinetic rates in stochastic gene regulatory networks
This paper addresses the core challenge of distinguishing genuine stochastic dynamics of gene regulatory networks from artifacts introduced by imperfe...
-
Approximate Bayesian Inference on Mechanisms of Network Growth and Evolution
This paper addresses the core challenge of inferring the relative contributions of multiple, simultaneous generative mechanisms in network formation w...
-
An AI Implementation Science Study to Improve Trustworthy Data in a Large Healthcare System
This paper addresses the critical gap between theoretical AI research and real-world clinical implementation by providing a practical framework for as...
Translating Measures onto Mechanisms: The Cognitive Relevance of Higher-Order Information
University of Amsterdam | University of Cambridge | Queen Mary University of London | Imperial College London | University of Vermont | Indiana University | University of Glasgow | Universidad Catolica del Maule | University of Helsinki
The 30-Second View
IN SHORT: This review addresses the core challenge of translating abstract higher-order information theory metrics (e.g., synergy, redundancy) into defensible, mechanistic explanations for cognitive function in neuroscience.
Innovation (TL;DR)
- Methodology Systematizes Shannon-based multivariate metrics (e.g., Total Correlation, Dual Total Correlation, O-information) into a unified framework defined by two independent axes: interaction strength and redundancy-synergy balance.
- Theory Proposes that a balanced layering of synergistic integration and redundant broadcasting optimizes multiscale complexity, formalizing a fundamental computation-communication tradeoff in neural systems.
- Methodology Provides a pragmatic guide for applying Partial Information Decomposition (PID) to neural data, emphasizing the critical conceptual and practical consequences of choosing a specific redundancy function.
Key conclusions
- Higher-order dependence in multivariate systems can be parsimoniously characterized by two largely independent axes: interaction strength (e.g., quantified by S-information) and redundancy-synergy balance (e.g., quantified by O-information).
- Prototypical systems demonstrate this duality: a purely redundant COPY distribution yields O-information = +1 bit, while a purely synergistic XOR distribution yields O-information = -1 bit, despite both having an S-information of 3 bits.
- The balanced integration of synergistic (head-to-head) and redundant (tail-to-tail) information motifs is proposed as a mechanism optimizing multiscale complexity, formalizing a tradeoff critical for cognitive function.
Abstract: Higher–order information theory has become a rapidly growing toolkit in computational neuroscience, motivated by the idea that multivariate dependencies can reveal aspects of neural computation and communication invisible to pairwise analyses. Yet functional interpretations of synergy and redundancy often outpace principled arguments for how statistical quantities map onto mechanistic cognitive processes. Here we review the main families of higher-order measures with the explicit goal of translating mathematical properties into defensible mechanistic inferences. Firstly, we systematize Shannon-based multivariate metrics and demonstrate that higher-order dependence is parsimoniously characterized by two largely independent axes: interaction strength and redundancy-synergy balance. We argue that balanced layering of synergistic integration and redundant broadcasting optimizes multiscale complexity, formalizing a computation-communication tradeoff. We then examine the partial information decomposition and outline pragmatic considerations for its deployment in neural data. Equipped with the relevant mathematical essentials, we connect redundancy-synergy balance to cognitive function by progressively embedding their mathematical properties in real-world constraints, starting with small synthetic systems before gradually building up to neuroimaging. We close by identifying key future directions for mechanistic insight: cross-scale bridging, intervention-based validation, and thermodynamically grounded unification of information dynamics.