Paper List
-
Simulation and inference methods for non-Markovian stochastic biochemical reaction networks
This paper addresses the computational bottleneck of simulating and performing Bayesian inference for non-Markovian biochemical systems with history-d...
-
Translating Measures onto Mechanisms: The Cognitive Relevance of Higher-Order Information
This review addresses the core challenge of translating abstract higher-order information theory metrics (e.g., synergy, redundancy) into defensible, ...
-
Emergent Bayesian Behaviour and Optimal Cue Combination in LLMs
This paper addresses the critical gap in understanding whether LLMs spontaneously develop human-like Bayesian strategies for processing uncertain info...
-
Vessel Network Topology in Molecular Communication: Insights from Experiments and Theory
This work addresses the critical lack of experimentally validated channel models for molecular communication within complex vessel networks, which is ...
-
Modulation of DNA rheology by a transcription factor that forms aging microgels
This work addresses the fundamental question of how the transcription factor NANOG, essential for embryonic stem cell pluripotency, physically regulat...
-
Imperfect molecular detection renormalizes apparent kinetic rates in stochastic gene regulatory networks
This paper addresses the core challenge of distinguishing genuine stochastic dynamics of gene regulatory networks from artifacts introduced by imperfe...
-
Approximate Bayesian Inference on Mechanisms of Network Growth and Evolution
This paper addresses the core challenge of inferring the relative contributions of multiple, simultaneous generative mechanisms in network formation w...
-
An AI Implementation Science Study to Improve Trustworthy Data in a Large Healthcare System
This paper addresses the critical gap between theoretical AI research and real-world clinical implementation by providing a practical framework for as...
EcoCast: A Spatio-Temporal Model for Continual Biodiversity and Climate Risk Forecasting
Concordia University | Algoma University
The 30-Second View
IN SHORT: This paper addresses the critical bottleneck in conservation: the lack of timely, high-resolution, near-term forecasts of species distribution shifts under rapidly changing environmental conditions, moving beyond static models to operational, data-driven decision support.
Innovation (TL;DR)
- Methodology First transformer-based model applied to ecological and climate risk forecasting in Africa, using sequence-to-point prediction (12-month environmental sequences → next-month species occurrence) with explicit temporal dependency modeling via self-attention.
- Methodology Integration of continual learning (rehearsal + EWC) into biodiversity forecasting, enabling model updates with new data streams without catastrophic forgetting, crucial for non-stationary climate impacts.
- Biology Operational near-term forecasting paradigm (monthly to seasonal) that requires no future climate projections, using observed environmental sequences to predict immediate conservation-relevant shifts, bridging geophysical forecasting architectures with species distribution modeling.
Key conclusions
- EcoCast achieves macro-averaged F1 score of 0.65 and PR-AUC of 0.72 on 2023 holdout data for five African bird species, representing +34 and +43 percentage point improvements respectively over Random Forest baseline (F1=0.31, PR-AUC=0.29).
- Transformer architecture successfully captures critical temporal dependencies: annual seasonality via positional encoding, lagged environmental responses (2-4 month delays), and cross-species ecological signals through joint multi-label training.
- The framework demonstrates operational feasibility with monthly forecast updates using near-real-time data (ERA5 available within 5 days, final data 2-3 months later), enabling alignment with conservation planning cycles rather than static decadal projections.
Abstract: Increasing climate change and habitat loss are driving unprecedented shifts in species distributions. Conservation professionals urgently need timely, high-resolution predictions of biodiversity risks, especially in ecologically diverse regions like Africa. We propose EcoCast, a spatio-temporal model designed for continual biodiversity and climate risk forecasting. Utilizing multisource satellite imagery, climate data, and citizen science occurrence records, EcoCast predicts near-term (monthly to seasonal) shifts in species distributions through sequence-based transformers that model spatio-temporal environmental dependencies. The architecture is designed with support for continual learning to enable future operational deployment with new data streams. Our pilot study in Africa shows promising improvements in forecasting distributions of selected bird species compared to a Random Forest baseline, highlighting EcoCast's potential to inform targeted conservation policies. By demonstrating an end-to-end pipeline from multi-modal data ingestion to operational forecasting, EcoCast bridges the gap between cutting-edge machine learning and biodiversity management, ultimately guiding data-driven strategies for climate resilience and ecosystem conservation throughout Africa.