Paper List
-
Simulation and inference methods for non-Markovian stochastic biochemical reaction networks
This paper addresses the computational bottleneck of simulating and performing Bayesian inference for non-Markovian biochemical systems with history-d...
-
Translating Measures onto Mechanisms: The Cognitive Relevance of Higher-Order Information
This review addresses the core challenge of translating abstract higher-order information theory metrics (e.g., synergy, redundancy) into defensible, ...
-
Emergent Bayesian Behaviour and Optimal Cue Combination in LLMs
This paper addresses the critical gap in understanding whether LLMs spontaneously develop human-like Bayesian strategies for processing uncertain info...
-
Vessel Network Topology in Molecular Communication: Insights from Experiments and Theory
This work addresses the critical lack of experimentally validated channel models for molecular communication within complex vessel networks, which is ...
-
Modulation of DNA rheology by a transcription factor that forms aging microgels
This work addresses the fundamental question of how the transcription factor NANOG, essential for embryonic stem cell pluripotency, physically regulat...
-
Imperfect molecular detection renormalizes apparent kinetic rates in stochastic gene regulatory networks
This paper addresses the core challenge of distinguishing genuine stochastic dynamics of gene regulatory networks from artifacts introduced by imperfe...
-
Approximate Bayesian Inference on Mechanisms of Network Growth and Evolution
This paper addresses the core challenge of inferring the relative contributions of multiple, simultaneous generative mechanisms in network formation w...
-
An AI Implementation Science Study to Improve Trustworthy Data in a Large Healthcare System
This paper addresses the critical gap between theoretical AI research and real-world clinical implementation by providing a practical framework for as...
MoRSAIK: Sequence Motif Reactor Simulation, Analysis and Inference Kit in Python
Max-Planck-Institut für Astrophysik | Ludwig-Maximilians-Universität München | Technische Universität München | Exzellenzcluster ORIGINS
The 30-Second View
IN SHORT: This work addresses the computational bottleneck in simulating prebiotic RNA reactor dynamics by developing a Python package that tracks sequence motif concentrations instead of full RNA strands, enabling efficient Bayesian inference of reaction parameters.
Innovation (TL;DR)
- Methodology First implementation of Bayesian inference methods for RNA reactor simulations using Geometric Variational Inference via NIFTy.re framework
- Methodology Novel mean-field approximation approach that tracks k-mer motif concentrations (default k=4) instead of exponentially growing full RNA sequences
- Biology Enables systematic investigation of templated ligation dynamics under varying environmental conditions relevant to RNA world hypothesis
Key conclusions
- MoRSAIK reduces computational complexity from exponential to polynomial by tracking k-mer motifs (k=4 default) instead of full RNA strands
- The package enables Bayesian inference of reaction rate constants from templated ligation count data using Geometric Variational Inference
- Integration with JAX provides differentiable models for efficient gradient-based optimization and uncertainty quantification
Abstract: Origins of life research investigates how life could emerge from prebiotic chemistry only. Living systems as we know them today rely on RNA, DNA and proteins. According to the central dogma of molecular biology, information is stored in DNA, transfered by RNA resulting in proteins that catalyze functional reactions, such as synthesis and replication of DNA and RNA. One possible explanation of how this mechanism evolved provides the RNA world hypothesis (Crick 1968; Higgs and Lehman 2014; Orgel 1968; Pressman, Blanco, and Chen 2015; Szostak 2012). It states that life could emerge from RNA strands only, storing and transferring biological information, as well as catalyzing reactions as ribozymes. Before this state could have emerged, however, the prebiotic world was probably a purely chemical pool of short RNA strands with random sequences and without biological function. Despite the lack of guidence by proteins, the RNA sequences reacted with each other. In such an RNA reactor RNA strands perform hybridization and dehybridization, as well as ligation and cleavage. In this context relevant questions are what are the conditions that allow longer RNA strands to be built and how can information carrying in RNA sequence emerge? A key reaction for the emergence of longer RNA strands is templated ligation. There, two strands hybridize adjacent onto a template strand and ligate. The rate of this reaction is the larger, the better the two strands match the complementary sequence of the template strand. The extended strands can then serve as a template for the next generation of templated ligation. This leads to an acceleration of production of complementary strands. This process, however, is highly sensitive to environmental conditions determining the reaction rates within an RNA reactor (Göppel et al. 2022; Rosenberger et al. 2021). In order to investigate those RNA reactors, efficient simulations are needed because the space of possible RNA sequences increases exponentially with the length of the strands, as well as the number of reactions between two strands. In addition, simulations have to be compared to experimental data for validation and parameter calibration. Here, we present the MoRSAIK python package for sequence motif (or k-mer) reactor simulation, analysis and inference. It enables users to simulate RNA sequence motif dynamics in the mean field approximation as well as to infer the reaction parameters from data with Bayesian methods and to analyze results by computing observables and plotting. MoRSAIK simulates an RNA reactor by following the reactions and the concentrations of all strands inside up to a certain length (of four nucleotides by default). Longer strands are followed indirectly, by tracking the concentrations of their containing sequence motifs of that maximum length.