Paper List
-
Simulation and inference methods for non-Markovian stochastic biochemical reaction networks
This paper addresses the computational bottleneck of simulating and performing Bayesian inference for non-Markovian biochemical systems with history-d...
-
Translating Measures onto Mechanisms: The Cognitive Relevance of Higher-Order Information
This review addresses the core challenge of translating abstract higher-order information theory metrics (e.g., synergy, redundancy) into defensible, ...
-
Emergent Bayesian Behaviour and Optimal Cue Combination in LLMs
This paper addresses the critical gap in understanding whether LLMs spontaneously develop human-like Bayesian strategies for processing uncertain info...
-
Vessel Network Topology in Molecular Communication: Insights from Experiments and Theory
This work addresses the critical lack of experimentally validated channel models for molecular communication within complex vessel networks, which is ...
-
Modulation of DNA rheology by a transcription factor that forms aging microgels
This work addresses the fundamental question of how the transcription factor NANOG, essential for embryonic stem cell pluripotency, physically regulat...
-
Imperfect molecular detection renormalizes apparent kinetic rates in stochastic gene regulatory networks
This paper addresses the core challenge of distinguishing genuine stochastic dynamics of gene regulatory networks from artifacts introduced by imperfe...
-
Approximate Bayesian Inference on Mechanisms of Network Growth and Evolution
This paper addresses the core challenge of inferring the relative contributions of multiple, simultaneous generative mechanisms in network formation w...
-
An AI Implementation Science Study to Improve Trustworthy Data in a Large Healthcare System
This paper addresses the critical gap between theoretical AI research and real-world clinical implementation by providing a practical framework for as...
SSDLabeler: Realistic semi-synthetic data generation for multi-label artifact classification in EEG
Sony Computer Science Laboratories, Inc., Tokyo, Japan
The 30-Second View
IN SHORT: This paper addresses the core challenge of training robust multi-label EEG artifact classifiers by overcoming the scarcity and limited diversity of manually labeled training data through a novel semi-synthetic data generation framework.
Innovation (TL;DR)
- Methodology Introduces SSDLabeler, a framework that generates realistic semi-synthetic EEG data by simultaneously reinjecting multiple ICA-isolated artifact types into clean data, preserving the co-occurrence structure of real-world contamination.
- Methodology Develops a novel artifact verification step using RMS and PSD thresholding criteria at the epoch level to ensure the physiological plausibility of generated contaminations, moving beyond simple ICA component injection.
- Biology Proposes a multi-label artifact classification paradigm that identifies multiple co-occurring artifact types (eye, muscle, heart, line, channel, other) within single EEG epochs, providing transparent contamination information for flexible preprocessing decisions.
Key conclusions
- SSDLabeler-trained classifiers achieved the highest overall accuracy (0.839) on motor execution test data, significantly outperforming raw EEG training (0.772, p<0.05 for Clean, Eye, and Line categories) and prior SSD methods (0.788).
- On instructed-noise session data, the proposed method achieved 0.812 accuracy, demonstrating strong generalization with significant improvements over raw EEG (0.618, p<0.05 for Clean, Eye, and Channel categories) and prior SSD (0.756).
- The framework successfully captures artifact co-occurrence, with the classifier showing balanced performance across most artifact types, though muscle artifact detection remained challenging (accuracy 0.605 vs. 0.785 for prior SSD).
Abstract: EEG recordings are inherently contaminated by artifacts such as ocular, muscular, and environmental noise, which obscure neural activity and complicate preprocessing. Artifact classification offers advantages in stability and transparency, providing a viable alternative to ICA-based methods that enable flexible use alongside human inspections and across various applications. However, artifact classification is limited by its training data as it requires extensive manual labeling, which cannot fully cover the diversity of real-world EEG. Semi-synthetic data (SSD) methods have been proposed to address this limitation, but prior approaches typically injected single artifact types using ICA components or required separately recorded artifact signals, reducing both the realism of the generated data and the applicability of the method. To overcome these issues, we introduce SSDLabeler, a framework that generates realistic, annotated SSDs by decomposing real EEG with ICA, epoch-level artifact verification using RMS and PSD criteria, and reinjecting multiple artifact types into clean data. When applied to train a multi-label artifact classifier, it improved accuracy on raw EEG across diverse conditions compared to prior SSD and raw EEG training, establishing a scalable foundation for artifact handling that captures the co-occurrence and complexity of real EEG.