Paper List
-
PanFoMa: A Lightweight Foundation Model and Benchmark for Pan-Cancer
This paper addresses the dual challenge of achieving computational efficiency without sacrificing accuracy in whole-transcriptome single-cell represen...
-
Beyond Bayesian Inference: The Correlation Integral Likelihood Framework and Gradient Flow Methods for Deterministic Sampling
This paper addresses the core challenge of calibrating complex biological models (e.g., PDEs, agent-based models) with incomplete, noisy, or heterogen...
-
Contrastive Deep Learning for Variant Detection in Wastewater Genomic Sequencing
This paper addresses the core challenge of detecting viral variants in wastewater sequencing data without reference genomes or labeled annotations, ov...
-
SpikGPT: A High-Accuracy and Interpretable Spiking Attention Framework for Single-Cell Annotation
This paper addresses the core challenge of robust single-cell annotation across heterogeneous datasets with batch effects and the critical need to ide...
-
Unlocking hidden biomolecular conformational landscapes in diffusion models at inference time
This paper addresses the core challenge of efficiently and accurately sampling the conformational landscape of biomolecules from diffusion-based struc...
-
Learning From Limited Data and Feedback for Cell Culture Process Monitoring: A Comparative Study
This paper addresses the core challenge of developing accurate real-time bioprocess monitoring soft sensors under severe data constraints: limited his...
-
Cell-cell communication inference and analysis: biological mechanisms, computational approaches, and future opportunities
This review addresses the critical need for a systematic framework to navigate the rapidly expanding landscape of computational methods for inferring ...
-
Generating a Contact Matrix for Aged Care Settings in Australia: an agent-based model study
This study addresses the critical gap in understanding heterogeneous contact patterns within aged care facilities, where existing population-level con...
Translating Measures onto Mechanisms: The Cognitive Relevance of Higher-Order Information
University of Amsterdam | University of Cambridge | Queen Mary University of London | Imperial College London | University of Vermont | Indiana University | University of Glasgow | Universidad Catolica del Maule | University of Helsinki
The 30-Second View
IN SHORT: This review addresses the core challenge of translating abstract higher-order information theory metrics (e.g., synergy, redundancy) into defensible, mechanistic explanations for cognitive function in neuroscience.
Innovation (TL;DR)
- Methodology Systematizes Shannon-based multivariate metrics (e.g., Total Correlation, Dual Total Correlation, O-information) into a unified framework defined by two independent axes: interaction strength and redundancy-synergy balance.
- Theory Proposes that a balanced layering of synergistic integration and redundant broadcasting optimizes multiscale complexity, formalizing a fundamental computation-communication tradeoff in neural systems.
- Methodology Provides a pragmatic guide for applying Partial Information Decomposition (PID) to neural data, emphasizing the critical conceptual and practical consequences of choosing a specific redundancy function.
Key conclusions
- Higher-order dependence in multivariate systems can be parsimoniously characterized by two largely independent axes: interaction strength (e.g., quantified by S-information) and redundancy-synergy balance (e.g., quantified by O-information).
- Prototypical systems demonstrate this duality: a purely redundant COPY distribution yields O-information = +1 bit, while a purely synergistic XOR distribution yields O-information = -1 bit, despite both having an S-information of 3 bits.
- The balanced integration of synergistic (head-to-head) and redundant (tail-to-tail) information motifs is proposed as a mechanism optimizing multiscale complexity, formalizing a tradeoff critical for cognitive function.
Abstract: Higher–order information theory has become a rapidly growing toolkit in computational neuroscience, motivated by the idea that multivariate dependencies can reveal aspects of neural computation and communication invisible to pairwise analyses. Yet functional interpretations of synergy and redundancy often outpace principled arguments for how statistical quantities map onto mechanistic cognitive processes. Here we review the main families of higher-order measures with the explicit goal of translating mathematical properties into defensible mechanistic inferences. Firstly, we systematize Shannon-based multivariate metrics and demonstrate that higher-order dependence is parsimoniously characterized by two largely independent axes: interaction strength and redundancy-synergy balance. We argue that balanced layering of synergistic integration and redundant broadcasting optimizes multiscale complexity, formalizing a computation-communication tradeoff. We then examine the partial information decomposition and outline pragmatic considerations for its deployment in neural data. Equipped with the relevant mathematical essentials, we connect redundancy-synergy balance to cognitive function by progressively embedding their mathematical properties in real-world constraints, starting with small synthetic systems before gradually building up to neuroimaging. We close by identifying key future directions for mechanistic insight: cross-scale bridging, intervention-based validation, and thermodynamically grounded unification of information dynamics.