Paper List
-
PanFoMa: A Lightweight Foundation Model and Benchmark for Pan-Cancer
This paper addresses the dual challenge of achieving computational efficiency without sacrificing accuracy in whole-transcriptome single-cell represen...
-
Beyond Bayesian Inference: The Correlation Integral Likelihood Framework and Gradient Flow Methods for Deterministic Sampling
This paper addresses the core challenge of calibrating complex biological models (e.g., PDEs, agent-based models) with incomplete, noisy, or heterogen...
-
Contrastive Deep Learning for Variant Detection in Wastewater Genomic Sequencing
This paper addresses the core challenge of detecting viral variants in wastewater sequencing data without reference genomes or labeled annotations, ov...
-
SpikGPT: A High-Accuracy and Interpretable Spiking Attention Framework for Single-Cell Annotation
This paper addresses the core challenge of robust single-cell annotation across heterogeneous datasets with batch effects and the critical need to ide...
-
Unlocking hidden biomolecular conformational landscapes in diffusion models at inference time
This paper addresses the core challenge of efficiently and accurately sampling the conformational landscape of biomolecules from diffusion-based struc...
-
Learning From Limited Data and Feedback for Cell Culture Process Monitoring: A Comparative Study
This paper addresses the core challenge of developing accurate real-time bioprocess monitoring soft sensors under severe data constraints: limited his...
-
Cell-cell communication inference and analysis: biological mechanisms, computational approaches, and future opportunities
This review addresses the critical need for a systematic framework to navigate the rapidly expanding landscape of computational methods for inferring ...
-
Generating a Contact Matrix for Aged Care Settings in Australia: an agent-based model study
This study addresses the critical gap in understanding heterogeneous contact patterns within aged care facilities, where existing population-level con...
A Theoretical Framework for the Formation of Large Animal Groups: Topological Coordination, Subgroup Merging, and Velocity Inheritance
Department of Computer Science and Technology, Capital University of Economics and Business, Beijing 100070, China.
The 30-Second View
IN SHORT: This paper addresses the core problem of how large, coordinated animal groups form in nature, challenging the classical view of gradual aggregation by proposing a mechanism of rapid subgroup merging driven by topological network dynamics.
Innovation (TL;DR)
- Theory Introduces a topological coordination theory based on time-varying directed interaction networks, identifying a single dominant Strongly Connected Component (SCC) as the driver of group velocity.
- Methodology Proposes the 'velocity inheritance' mechanism, where a trailing subgroup aligns with and inherits the velocity of the leading subgroup's dominant SCC during merging events.
- Biology Provides a unified, mechanistic explanation for multiple empirical features of animal groups, including broad neighbor-distance distributions, directional asymmetry, and narrow-front/wide-rear geometry.
Key conclusions
- Large moving groups form not by slow accumulation but through rapid merging of pre-existing subgroups under high-density conditions, driven by topological network structure.
- The long-term interaction network of any coordinated group contains a single dominant SCC that dictates the collective velocity (speed and direction) for the entire group.
- Repeated subgroup merging, governed by velocity inheritance, predicts that larger groups move more slowly than the mean speed of the original constituent subgroups—a testable hypothesis for existing 3D tracking datasets.
Abstract: Large animal groups—bird flocks, fish schools, insect swarms—are often assumed to form by gradual aggregation of sparsely distributed individuals. Using a mathematically precise framework based on time-varying directed interaction networks, we show that this widely held view is incomplete. The theory demonstrates that large moving groups do not arise by slow accumulation; instead, they emerge through the rapid merging of multiple pre-existing subgroups that are simultaneously activated under high-density conditions. The key mechanism is topological: the long-term interaction structure of any moving group contains a single dominant strongly connected component (SCC). This dominant SCC determines the collective velocity—both speed and direction—of the entire group. When two subgroups encounter one another, the trailing subgroup aligns with—and ultimately inherits—the velocity of the dominant SCC of the leading subgroup. Repeated merging events naturally generate large groups whose speed is predicted to be lower than the mean speed of the original subgroups. The same dynamics explain several universal empirical features: broad neighbour-distance distributions, directional asymmetry in neighbour selection, and the characteristic narrow-front, wide-rear geometry of real flocks. The framework yields testable predictions for STARFLAG-style 3D datasets, offering a unified explanation for the formation, maintenance, and geometry of coordinated animal groups.