Paper List
-
Simulation and inference methods for non-Markovian stochastic biochemical reaction networks
This paper addresses the computational bottleneck of simulating and performing Bayesian inference for non-Markovian biochemical systems with history-d...
-
Translating Measures onto Mechanisms: The Cognitive Relevance of Higher-Order Information
This review addresses the core challenge of translating abstract higher-order information theory metrics (e.g., synergy, redundancy) into defensible, ...
-
Emergent Bayesian Behaviour and Optimal Cue Combination in LLMs
This paper addresses the critical gap in understanding whether LLMs spontaneously develop human-like Bayesian strategies for processing uncertain info...
-
Vessel Network Topology in Molecular Communication: Insights from Experiments and Theory
This work addresses the critical lack of experimentally validated channel models for molecular communication within complex vessel networks, which is ...
-
Modulation of DNA rheology by a transcription factor that forms aging microgels
This work addresses the fundamental question of how the transcription factor NANOG, essential for embryonic stem cell pluripotency, physically regulat...
-
Imperfect molecular detection renormalizes apparent kinetic rates in stochastic gene regulatory networks
This paper addresses the core challenge of distinguishing genuine stochastic dynamics of gene regulatory networks from artifacts introduced by imperfe...
-
Approximate Bayesian Inference on Mechanisms of Network Growth and Evolution
This paper addresses the core challenge of inferring the relative contributions of multiple, simultaneous generative mechanisms in network formation w...
-
An AI Implementation Science Study to Improve Trustworthy Data in a Large Healthcare System
This paper addresses the critical gap between theoretical AI research and real-world clinical implementation by providing a practical framework for as...
A Theoretical Framework for the Formation of Large Animal Groups: Topological Coordination, Subgroup Merging, and Velocity Inheritance
Department of Computer Science and Technology, Capital University of Economics and Business, Beijing 100070, China.
The 30-Second View
IN SHORT: This paper addresses the core problem of how large, coordinated animal groups form in nature, challenging the classical view of gradual aggregation by proposing a mechanism of rapid subgroup merging driven by topological network dynamics.
Innovation (TL;DR)
- Theory Introduces a topological coordination theory based on time-varying directed interaction networks, identifying a single dominant Strongly Connected Component (SCC) as the driver of group velocity.
- Methodology Proposes the 'velocity inheritance' mechanism, where a trailing subgroup aligns with and inherits the velocity of the leading subgroup's dominant SCC during merging events.
- Biology Provides a unified, mechanistic explanation for multiple empirical features of animal groups, including broad neighbor-distance distributions, directional asymmetry, and narrow-front/wide-rear geometry.
Key conclusions
- Large moving groups form not by slow accumulation but through rapid merging of pre-existing subgroups under high-density conditions, driven by topological network structure.
- The long-term interaction network of any coordinated group contains a single dominant SCC that dictates the collective velocity (speed and direction) for the entire group.
- Repeated subgroup merging, governed by velocity inheritance, predicts that larger groups move more slowly than the mean speed of the original constituent subgroups—a testable hypothesis for existing 3D tracking datasets.
Abstract: Large animal groups—bird flocks, fish schools, insect swarms—are often assumed to form by gradual aggregation of sparsely distributed individuals. Using a mathematically precise framework based on time-varying directed interaction networks, we show that this widely held view is incomplete. The theory demonstrates that large moving groups do not arise by slow accumulation; instead, they emerge through the rapid merging of multiple pre-existing subgroups that are simultaneously activated under high-density conditions. The key mechanism is topological: the long-term interaction structure of any moving group contains a single dominant strongly connected component (SCC). This dominant SCC determines the collective velocity—both speed and direction—of the entire group. When two subgroups encounter one another, the trailing subgroup aligns with—and ultimately inherits—the velocity of the dominant SCC of the leading subgroup. Repeated merging events naturally generate large groups whose speed is predicted to be lower than the mean speed of the original subgroups. The same dynamics explain several universal empirical features: broad neighbour-distance distributions, directional asymmetry in neighbour selection, and the characteristic narrow-front, wide-rear geometry of real flocks. The framework yields testable predictions for STARFLAG-style 3D datasets, offering a unified explanation for the formation, maintenance, and geometry of coordinated animal groups.