Paper List
-
EnzyCLIP: A Cross-Attention Dual Encoder Framework with Contrastive Learning for Predicting Enzyme Kinetic Constants
This paper addresses the core challenge of jointly predicting enzyme kinetic parameters (Kcat and Km) by modeling dynamic enzyme-substrate interaction...
-
Tissue stress measurements with Bayesian Inversion Stress Microscopy
This paper addresses the core challenge of measuring absolute, tissue-scale mechanical stress without making assumptions about tissue rheology, which ...
-
DeepFRI Demystified: Interpretability vs. Accuracy in AI Protein Function Prediction
This study addresses the critical gap between high predictive accuracy and biological interpretability in DeepFRI, revealing that the model often prio...
-
Hierarchical Molecular Language Models (HMLMs)
This paper addresses the core challenge of accurately modeling context-dependent signaling, pathway cross-talk, and temporal dynamics across multiple ...
-
Stability analysis of action potential generation using Markov models of voltage‑gated sodium channel isoforms
This work addresses the challenge of systematically characterizing how the high-dimensional parameter space of Markov models for different sodium chan...
-
Personalized optimization of pediatric HD-tDCS for dose consistency and target engagement
This paper addresses the critical limitation of one-size-fits-all HD-tDCS protocols in pediatric populations by developing a personalized optimization...
-
Consistent Synthetic Sequences Unlock Structural Diversity in Fully Atomistic De Novo Protein Design
This paper addresses the core pain point of low sequence-structure alignment in existing synthetic datasets (e.g., AFDB), which severely limits the pe...
-
Generative design and validation of therapeutic peptides for glioblastoma based on a potential target ATP5A
This paper addresses the critical bottleneck in therapeutic peptide design: how to efficiently optimize lead peptides with geometric constraints while...
SSDLabeler: Realistic semi-synthetic data generation for multi-label artifact classification in EEG
Sony Computer Science Laboratories, Inc., Tokyo, Japan
The 30-Second View
IN SHORT: This paper addresses the core challenge of training robust multi-label EEG artifact classifiers by overcoming the scarcity and limited diversity of manually labeled training data through a novel semi-synthetic data generation framework.
Innovation (TL;DR)
- Methodology Introduces SSDLabeler, a framework that generates realistic semi-synthetic EEG data by simultaneously reinjecting multiple ICA-isolated artifact types into clean data, preserving the co-occurrence structure of real-world contamination.
- Methodology Develops a novel artifact verification step using RMS and PSD thresholding criteria at the epoch level to ensure the physiological plausibility of generated contaminations, moving beyond simple ICA component injection.
- Biology Proposes a multi-label artifact classification paradigm that identifies multiple co-occurring artifact types (eye, muscle, heart, line, channel, other) within single EEG epochs, providing transparent contamination information for flexible preprocessing decisions.
Key conclusions
- SSDLabeler-trained classifiers achieved the highest overall accuracy (0.839) on motor execution test data, significantly outperforming raw EEG training (0.772, p<0.05 for Clean, Eye, and Line categories) and prior SSD methods (0.788).
- On instructed-noise session data, the proposed method achieved 0.812 accuracy, demonstrating strong generalization with significant improvements over raw EEG (0.618, p<0.05 for Clean, Eye, and Channel categories) and prior SSD (0.756).
- The framework successfully captures artifact co-occurrence, with the classifier showing balanced performance across most artifact types, though muscle artifact detection remained challenging (accuracy 0.605 vs. 0.785 for prior SSD).
Abstract: EEG recordings are inherently contaminated by artifacts such as ocular, muscular, and environmental noise, which obscure neural activity and complicate preprocessing. Artifact classification offers advantages in stability and transparency, providing a viable alternative to ICA-based methods that enable flexible use alongside human inspections and across various applications. However, artifact classification is limited by its training data as it requires extensive manual labeling, which cannot fully cover the diversity of real-world EEG. Semi-synthetic data (SSD) methods have been proposed to address this limitation, but prior approaches typically injected single artifact types using ICA components or required separately recorded artifact signals, reducing both the realism of the generated data and the applicability of the method. To overcome these issues, we introduce SSDLabeler, a framework that generates realistic, annotated SSDs by decomposing real EEG with ICA, epoch-level artifact verification using RMS and PSD criteria, and reinjecting multiple artifact types into clean data. When applied to train a multi-label artifact classifier, it improved accuracy on raw EEG across diverse conditions compared to prior SSD and raw EEG training, establishing a scalable foundation for artifact handling that captures the co-occurrence and complexity of real EEG.