Paper List
-
Emergent Spatiotemporal Dynamics in Large-Scale Brain Networks with Next Generation Neural Mass Models
This work addresses the core challenge of understanding how complex, brain-wide spatiotemporal patterns emerge from the interaction of biophysically d...
-
Human-Centred Evaluation of Text-to-Image Generation Models for Self-expression of Mental Distress: A Dataset Based on GPT-4o
This paper addresses the critical gap in evaluating how AI-generated images can effectively support cross-cultural mental distress communication, part...
-
GOPHER: Optimization-based Phenotype Randomization for Genome-Wide Association Studies with Differential Privacy
This paper addresses the core challenge of balancing rigorous privacy protection with data utility when releasing full GWAS summary statistics, overco...
-
Real-time Cricket Sorting By Sex A low-cost embedded solution using YOLOv8 and Raspberry Pi
This paper addresses the critical bottleneck in industrial insect farming: the lack of automated, real-time sex sorting systems for Acheta domesticus ...
-
Collective adsorption of pheromones at the water-air interface
This paper addresses the core challenge of understanding how amphiphilic pheromones, previously assumed to be transported in the gas phase, can be sta...
-
pHapCompass: Probabilistic Assembly and Uncertainty Quantification of Polyploid Haplotype Phase
This paper addresses the core challenge of accurately assembling polyploid haplotypes from sequencing data, where read assignment ambiguity and an exp...
-
Setting up for failure: automatic discovery of the neural mechanisms of cognitive errors
This paper addresses the core challenge of automating the discovery of biologically plausible recurrent neural network (RNN) dynamics that can replica...
-
Influence of Object Affordance on Action Language Understanding: Evidence from Dynamic Causal Modeling Analysis
This study addresses the core challenge of moving beyond correlational evidence to establish the *causal direction* and *temporal dynamics* of how obj...
SSDLabeler: Realistic semi-synthetic data generation for multi-label artifact classification in EEG
Sony Computer Science Laboratories, Inc., Tokyo, Japan
The 30-Second View
IN SHORT: This paper addresses the core challenge of training robust multi-label EEG artifact classifiers by overcoming the scarcity and limited diversity of manually labeled training data through a novel semi-synthetic data generation framework.
Innovation (TL;DR)
- Methodology Introduces SSDLabeler, a framework that generates realistic semi-synthetic EEG data by simultaneously reinjecting multiple ICA-isolated artifact types into clean data, preserving the co-occurrence structure of real-world contamination.
- Methodology Develops a novel artifact verification step using RMS and PSD thresholding criteria at the epoch level to ensure the physiological plausibility of generated contaminations, moving beyond simple ICA component injection.
- Biology Proposes a multi-label artifact classification paradigm that identifies multiple co-occurring artifact types (eye, muscle, heart, line, channel, other) within single EEG epochs, providing transparent contamination information for flexible preprocessing decisions.
Key conclusions
- SSDLabeler-trained classifiers achieved the highest overall accuracy (0.839) on motor execution test data, significantly outperforming raw EEG training (0.772, p<0.05 for Clean, Eye, and Line categories) and prior SSD methods (0.788).
- On instructed-noise session data, the proposed method achieved 0.812 accuracy, demonstrating strong generalization with significant improvements over raw EEG (0.618, p<0.05 for Clean, Eye, and Channel categories) and prior SSD (0.756).
- The framework successfully captures artifact co-occurrence, with the classifier showing balanced performance across most artifact types, though muscle artifact detection remained challenging (accuracy 0.605 vs. 0.785 for prior SSD).
Abstract: EEG recordings are inherently contaminated by artifacts such as ocular, muscular, and environmental noise, which obscure neural activity and complicate preprocessing. Artifact classification offers advantages in stability and transparency, providing a viable alternative to ICA-based methods that enable flexible use alongside human inspections and across various applications. However, artifact classification is limited by its training data as it requires extensive manual labeling, which cannot fully cover the diversity of real-world EEG. Semi-synthetic data (SSD) methods have been proposed to address this limitation, but prior approaches typically injected single artifact types using ICA components or required separately recorded artifact signals, reducing both the realism of the generated data and the applicability of the method. To overcome these issues, we introduce SSDLabeler, a framework that generates realistic, annotated SSDs by decomposing real EEG with ICA, epoch-level artifact verification using RMS and PSD criteria, and reinjecting multiple artifact types into clean data. When applied to train a multi-label artifact classifier, it improved accuracy on raw EEG across diverse conditions compared to prior SSD and raw EEG training, establishing a scalable foundation for artifact handling that captures the co-occurrence and complexity of real EEG.