Paper List
-
STAR-GO: Improving Protein Function Prediction by Learning to Hierarchically Integrate Ontology-Informed Semantic Embeddings
This paper addresses the core challenge of generalizing protein function prediction to unseen or newly introduced Gene Ontology (GO) terms by overcomi...
-
Incorporating indel channels into average-case analysis of seed-chain-extend
This paper addresses the core pain point of bridging the theoretical gap for the widely used seed-chain-extend heuristic by providing the first rigoro...
-
Competition, stability, and functionality in excitatory-inhibitory neural circuits
This paper addresses the core challenge of extending interpretable energy-based frameworks to biologically realistic asymmetric neural networks, where...
-
Enhancing Clinical Note Generation with ICD-10, Clinical Ontology Knowledge Graphs, and Chain-of-Thought Prompting Using GPT-4
This paper addresses the core challenge of generating accurate and clinically relevant patient notes from sparse inputs (ICD codes and basic demograph...
-
Hypothesis-Based Particle Detection for Accurate Nanoparticle Counting and Digital Diagnostics
This paper addresses the core challenge of achieving accurate, interpretable, and training-free nanoparticle counting in digital diagnostic assays, wh...
-
MCP-AI: Protocol-Driven Intelligence Framework for Autonomous Reasoning in Healthcare
This paper addresses the critical gap in healthcare AI systems that lack contextual reasoning, long-term state management, and verifiable workflows by...
-
Model Gateway: Model Management Platform for Model-Driven Drug Discovery
This paper addresses the critical bottleneck of fragmented, ad-hoc model management in pharmaceutical research by providing a centralized, scalable ML...
-
Tree Thinking in the Genomic Era: Unifying Models Across Cells, Populations, and Species
This paper addresses the fragmentation of tree-based inference methods across biological scales by identifying shared algorithmic principles and stati...
Covering Relations in the Poset of Combinatorial Neural Codes
Pacific Northwest National Laboratory | Florida Atlantic University
The 30-Second View
IN SHORT: This work addresses the core challenge of navigating the complex poset structure of neural codes to systematically test the conjecture linking convex neural codes to representable oriented matroids.
Innovation (TL;DR)
- Methodology Provides the first complete characterization of upward covering relations in the poset P_Code of combinatorial neural codes.
- Theory Introduces a constructive method to generate all codes that cover a given neural code, based on the concept of isolated subsets within its intersection completion.
- Methodology Establishes a key lemma (Lemma 3.1) showing that a morphism between codes uniquely extends to a morphism between their intersection completions, preserving surjectivity.
Key conclusions
- A code C covers a code D in P_Code if and only if its intersection completion C_hat covers D_hat (Lemma 3.3).
- If C covers D, then C_hat is isomorphic to D_hat_[I] for some isolated subset I ⊆ D_hat (Theorem 3.5).
- All codes covering a given code D can be constructed via four explicit types of operations on isolated subsets of D_hat, as defined in Definition 3.9 and Table 1.
Abstract: A combinatorial neural code is a subset of the power set 2[n] on [n]={1,…,n}, in which each 1≤i≤n represents a neuron and each element (codeword) represents the co-firing event of some neurons. Consider a space X⊆ℝd, simulating an animal’s environment, and a collection 𝒰={U1,…,Un} of open subsets of X. Each Ui⊆X simulates a place field which is a specific region where a place cell i is active. Then, the code of 𝒰 in X is defined as code(𝒰,X)={σ⊆[n]|⋂i∈σUi∖⋃j∉σUj≠∅}. If a neural code 𝒞=code(𝒰,X) for some X and 𝒰, we say 𝒞 has a realization of open subsets of some space X. Although every combinatorial neural code obviously has a realization by some open subsets, determining whether it has a realization by some open convex subsets remains unsolved. Many studies attempted to tackle this decision problem, but only partial results were achieved. In fact, a previous study showed that the decision problem of convex neural codes is NP-hard. Furthermore, the authors of this study conjectured that every convex neural code can be realized as a minor of a neural code arising from a representable oriented matroid, which can lead to an equivalence between convex and polytope convex neural codes. Even though this conjecture has been confirmed in dimension two, its validity in higher dimensions is still unknown. To advance the investigation of this conjecture, we provide a complete characterization of the covering relations within the poset 𝐏𝐂𝐨𝐝𝐞 of neural codes.