Paper List
-
EnzyCLIP: A Cross-Attention Dual Encoder Framework with Contrastive Learning for Predicting Enzyme Kinetic Constants
This paper addresses the core challenge of jointly predicting enzyme kinetic parameters (Kcat and Km) by modeling dynamic enzyme-substrate interaction...
-
Tissue stress measurements with Bayesian Inversion Stress Microscopy
This paper addresses the core challenge of measuring absolute, tissue-scale mechanical stress without making assumptions about tissue rheology, which ...
-
DeepFRI Demystified: Interpretability vs. Accuracy in AI Protein Function Prediction
This study addresses the critical gap between high predictive accuracy and biological interpretability in DeepFRI, revealing that the model often prio...
-
Hierarchical Molecular Language Models (HMLMs)
This paper addresses the core challenge of accurately modeling context-dependent signaling, pathway cross-talk, and temporal dynamics across multiple ...
-
Stability analysis of action potential generation using Markov models of voltage‑gated sodium channel isoforms
This work addresses the challenge of systematically characterizing how the high-dimensional parameter space of Markov models for different sodium chan...
-
Personalized optimization of pediatric HD-tDCS for dose consistency and target engagement
This paper addresses the critical limitation of one-size-fits-all HD-tDCS protocols in pediatric populations by developing a personalized optimization...
-
Consistent Synthetic Sequences Unlock Structural Diversity in Fully Atomistic De Novo Protein Design
This paper addresses the core pain point of low sequence-structure alignment in existing synthetic datasets (e.g., AFDB), which severely limits the pe...
-
Generative design and validation of therapeutic peptides for glioblastoma based on a potential target ATP5A
This paper addresses the critical bottleneck in therapeutic peptide design: how to efficiently optimize lead peptides with geometric constraints while...
Covering Relations in the Poset of Combinatorial Neural Codes
Pacific Northwest National Laboratory | Florida Atlantic University
The 30-Second View
IN SHORT: This work addresses the core challenge of navigating the complex poset structure of neural codes to systematically test the conjecture linking convex neural codes to representable oriented matroids.
Innovation (TL;DR)
- Methodology Provides the first complete characterization of upward covering relations in the poset P_Code of combinatorial neural codes.
- Theory Introduces a constructive method to generate all codes that cover a given neural code, based on the concept of isolated subsets within its intersection completion.
- Methodology Establishes a key lemma (Lemma 3.1) showing that a morphism between codes uniquely extends to a morphism between their intersection completions, preserving surjectivity.
Key conclusions
- A code C covers a code D in P_Code if and only if its intersection completion C_hat covers D_hat (Lemma 3.3).
- If C covers D, then C_hat is isomorphic to D_hat_[I] for some isolated subset I ⊆ D_hat (Theorem 3.5).
- All codes covering a given code D can be constructed via four explicit types of operations on isolated subsets of D_hat, as defined in Definition 3.9 and Table 1.
Abstract: A combinatorial neural code is a subset of the power set 2[n] on [n]={1,…,n}, in which each 1≤i≤n represents a neuron and each element (codeword) represents the co-firing event of some neurons. Consider a space X⊆ℝd, simulating an animal’s environment, and a collection 𝒰={U1,…,Un} of open subsets of X. Each Ui⊆X simulates a place field which is a specific region where a place cell i is active. Then, the code of 𝒰 in X is defined as code(𝒰,X)={σ⊆[n]|⋂i∈σUi∖⋃j∉σUj≠∅}. If a neural code 𝒞=code(𝒰,X) for some X and 𝒰, we say 𝒞 has a realization of open subsets of some space X. Although every combinatorial neural code obviously has a realization by some open subsets, determining whether it has a realization by some open convex subsets remains unsolved. Many studies attempted to tackle this decision problem, but only partial results were achieved. In fact, a previous study showed that the decision problem of convex neural codes is NP-hard. Furthermore, the authors of this study conjectured that every convex neural code can be realized as a minor of a neural code arising from a representable oriented matroid, which can lead to an equivalence between convex and polytope convex neural codes. Even though this conjecture has been confirmed in dimension two, its validity in higher dimensions is still unknown. To advance the investigation of this conjecture, we provide a complete characterization of the covering relations within the poset 𝐏𝐂𝐨𝐝𝐞 of neural codes.