Paper List
-
STAR-GO: Improving Protein Function Prediction by Learning to Hierarchically Integrate Ontology-Informed Semantic Embeddings
This paper addresses the core challenge of generalizing protein function prediction to unseen or newly introduced Gene Ontology (GO) terms by overcomi...
-
Incorporating indel channels into average-case analysis of seed-chain-extend
This paper addresses the core pain point of bridging the theoretical gap for the widely used seed-chain-extend heuristic by providing the first rigoro...
-
Competition, stability, and functionality in excitatory-inhibitory neural circuits
This paper addresses the core challenge of extending interpretable energy-based frameworks to biologically realistic asymmetric neural networks, where...
-
Enhancing Clinical Note Generation with ICD-10, Clinical Ontology Knowledge Graphs, and Chain-of-Thought Prompting Using GPT-4
This paper addresses the core challenge of generating accurate and clinically relevant patient notes from sparse inputs (ICD codes and basic demograph...
-
Hypothesis-Based Particle Detection for Accurate Nanoparticle Counting and Digital Diagnostics
This paper addresses the core challenge of achieving accurate, interpretable, and training-free nanoparticle counting in digital diagnostic assays, wh...
-
MCP-AI: Protocol-Driven Intelligence Framework for Autonomous Reasoning in Healthcare
This paper addresses the critical gap in healthcare AI systems that lack contextual reasoning, long-term state management, and verifiable workflows by...
-
Model Gateway: Model Management Platform for Model-Driven Drug Discovery
This paper addresses the critical bottleneck of fragmented, ad-hoc model management in pharmaceutical research by providing a centralized, scalable ML...
-
Tree Thinking in the Genomic Era: Unifying Models Across Cells, Populations, and Species
This paper addresses the fragmentation of tree-based inference methods across biological scales by identifying shared algorithmic principles and stati...
Emergent Bayesian Behaviour and Optimal Cue Combination in LLMs
Huawei Noah’s Ark Lab, London, UK | AI Centre, Department of Computer Science, University College London, London, UK
The 30-Second View
IN SHORT: This paper addresses the critical gap in understanding whether LLMs spontaneously develop human-like Bayesian strategies for processing uncertain information, revealing that high accuracy does not guarantee robust multimodal integration.
Innovation (TL;DR)
- Methodology Introduces BayesBench, the first psychophysics-inspired behavioral benchmark for LLMs with four magnitude estimation tasks (length, location, distance, duration) across text and image modalities.
- Methodology Develops Bayesian Consistency Score (BCS) to detect Bayes-consistent behavioral shifts even when accuracy saturates, enabling separation of capability from computational strategy.
- Biology Demonstrates emergent Bayesian behavior in capable LLMs without explicit training, with Llama-4 Maverick showing cue-combination efficiency exceeding human biological systems (RRE > 1 against Bayesian oracle).
Key conclusions
- GPT-5 Mini achieves perfect text accuracy (NRMSE ≈ 0) but fails to integrate visual cues efficiently, showing poor cue-combination efficiency (RRE < 1) despite high capability.
- Llama-4 Maverick demonstrates emergent Bayesian behavior with cue-combination efficiency exceeding Bayesian reliability-weighted baselines (RRE > 1), suggesting non-linear integration strategies.
- Bayesian Consistency Score reveals that more accurate models show stronger evidence of Bayesian behavior, with BCS positively correlated with accuracy across nine evaluated LLMs.
Abstract: Large language models (LLMs) excel at explicit reasoning, but their implicit computational strategies remain underexplored. Decades of psychophysics research show that humans intuitively process and integrate noisy signals using near-optimal Bayesian strategies in perceptual tasks. We ask whether LLMs exhibit similar behaviour and perform optimal multimodal integration without explicit training or instruction. Adopting the psychophysics paradigm, we infer computational principles of LLMs from systematic behavioural studies. We introduce a behavioural benchmark - BayesBench: four magnitude estimation tasks (length, location, distance, and duration) over text and image, inspired by classic psychophysics, and evaluate a diverse set of nine LLMs alongside human judgments for calibration. Through controlled ablations of noise, context, and instruction prompts, we measure performance, behaviour and efficiency in multimodal cue-combination. Beyond accuracy and efficiency metrics, we introduce a Bayesian Consistency Score that detects Bayes-consistent behavioural shifts even when accuracy saturates. Our results show that while capable models often adapt in Bayes-consistent ways, accuracy does not guarantee robustness. Notably, GPT-5 Mini achieves perfect text accuracy but fails to integrate visual cues efficiently. This reveals a critical dissociation between capability and strategy, suggesting accuracy-centric benchmarks may over-index on performance while missing brittle uncertainty handling. These findings reveal emergent principled handling of uncertainty and highlight the correlation between accuracy and Bayesian tendencies. We release our psychophysics benchmark and consistency metric as evaluation tools and to inform future multimodal architecture designs111Project webpage: https://bayes-bench.github.io.