Paper List
-
SSDLabeler: Realistic semi-synthetic data generation for multi-label artifact classification in EEG
This paper addresses the core challenge of training robust multi-label EEG artifact classifiers by overcoming the scarcity and limited diversity of ma...
-
Decoding Selective Auditory Attention to Musical Elements in Ecologically Valid Music Listening
This paper addresses the core challenge of objectively quantifying listeners' selective attention to specific musical components (e.g., vocals, drums,...
-
Physics-Guided Surrogate Modeling for Machine Learning–Driven DLD Design Optimization
This paper addresses the core bottleneck of translating microfluidic DLD devices from research prototypes to clinical applications by replacing weeks-...
-
Mechanistic Interpretability of Antibody Language Models Using SAEs
This work addresses the core challenge of achieving both interpretability and controllable generation in domain-specific protein language models, spec...
-
The Effective Reproduction Number in the Kermack-McKendrick model with age of infection and reinfection
This paper addresses the challenge of accurately estimating the time-varying effective reproduction number ℛ(t) in epidemics by incorporating two crit...
-
Fluctuating Environments Favor Extreme Dormancy Strategies and Penalize Intermediate Ones
This paper addresses the core challenge of determining how organisms should tune dormancy duration to match the temporal autocorrelation of their envi...
-
Covering Relations in the Poset of Combinatorial Neural Codes
This work addresses the core challenge of navigating the complex poset structure of neural codes to systematically test the conjecture linking convex ...
-
Revealing stimulus-dependent dynamics through statistical complexity
This paper addresses the core challenge of detecting stimulus-specific patterns in neural population dynamics that remain hidden to traditional variab...
EcoCast: A Spatio-Temporal Model for Continual Biodiversity and Climate Risk Forecasting
Concordia University | Algoma University
The 30-Second View
IN SHORT: This paper addresses the critical bottleneck in conservation: the lack of timely, high-resolution, near-term forecasts of species distribution shifts under rapidly changing environmental conditions, moving beyond static models to operational, data-driven decision support.
Innovation (TL;DR)
- Methodology First transformer-based model applied to ecological and climate risk forecasting in Africa, using sequence-to-point prediction (12-month environmental sequences → next-month species occurrence) with explicit temporal dependency modeling via self-attention.
- Methodology Integration of continual learning (rehearsal + EWC) into biodiversity forecasting, enabling model updates with new data streams without catastrophic forgetting, crucial for non-stationary climate impacts.
- Biology Operational near-term forecasting paradigm (monthly to seasonal) that requires no future climate projections, using observed environmental sequences to predict immediate conservation-relevant shifts, bridging geophysical forecasting architectures with species distribution modeling.
Key conclusions
- EcoCast achieves macro-averaged F1 score of 0.65 and PR-AUC of 0.72 on 2023 holdout data for five African bird species, representing +34 and +43 percentage point improvements respectively over Random Forest baseline (F1=0.31, PR-AUC=0.29).
- Transformer architecture successfully captures critical temporal dependencies: annual seasonality via positional encoding, lagged environmental responses (2-4 month delays), and cross-species ecological signals through joint multi-label training.
- The framework demonstrates operational feasibility with monthly forecast updates using near-real-time data (ERA5 available within 5 days, final data 2-3 months later), enabling alignment with conservation planning cycles rather than static decadal projections.
Abstract: Increasing climate change and habitat loss are driving unprecedented shifts in species distributions. Conservation professionals urgently need timely, high-resolution predictions of biodiversity risks, especially in ecologically diverse regions like Africa. We propose EcoCast, a spatio-temporal model designed for continual biodiversity and climate risk forecasting. Utilizing multisource satellite imagery, climate data, and citizen science occurrence records, EcoCast predicts near-term (monthly to seasonal) shifts in species distributions through sequence-based transformers that model spatio-temporal environmental dependencies. The architecture is designed with support for continual learning to enable future operational deployment with new data streams. Our pilot study in Africa shows promising improvements in forecasting distributions of selected bird species compared to a Random Forest baseline, highlighting EcoCast's potential to inform targeted conservation policies. By demonstrating an end-to-end pipeline from multi-modal data ingestion to operational forecasting, EcoCast bridges the gap between cutting-edge machine learning and biodiversity management, ultimately guiding data-driven strategies for climate resilience and ecosystem conservation throughout Africa.