Paper List
-
Pharmacophore-based design by learning on voxel grids
This paper addresses the computational bottleneck and limited novelty in conventional pharmacophore-based virtual screening by introducing a voxel cap...
-
CONFIDE: Hallucination Assessment for Reliable Biomolecular Structure Prediction and Design
This paper addresses the critical limitation of current protein structure prediction models (like AlphaFold3) where high-confidence scores (pLDDT) can...
-
On the Approximation of Phylogenetic Distance Functions by Artificial Neural Networks
This paper addresses the core challenge of developing computationally efficient and scalable neural network architectures that can learn accurate phyl...
-
EcoCast: A Spatio-Temporal Model for Continual Biodiversity and Climate Risk Forecasting
This paper addresses the critical bottleneck in conservation: the lack of timely, high-resolution, near-term forecasts of species distribution shifts ...
-
Training Dynamics of Learning 3D-Rotational Equivariance
This work addresses the core dilemma of whether to use computationally expensive equivariant architectures or faster symmetry-agnostic models with dat...
-
Fast and Accurate Node-Age Estimation Under Fossil Calibration Uncertainty Using the Adjusted Pairwise Likelihood
This paper addresses the dual challenge of computational inefficiency and sensitivity to fossil calibration errors in Bayesian divergence time estimat...
-
Few-shot Protein Fitness Prediction via In-context Learning and Test-time Training
This paper addresses the core challenge of accurately predicting protein fitness with only a handful of experimental observations, where data collecti...
-
scCluBench: Comprehensive Benchmarking of Clustering Algorithms for Single-Cell RNA Sequencing
This paper addresses the critical gap of fragmented and non-standardized benchmarking in single-cell RNA-seq clustering, which hinders objective compa...
A Theoretical Framework for the Formation of Large Animal Groups: Topological Coordination, Subgroup Merging, and Velocity Inheritance
Department of Computer Science and Technology, Capital University of Economics and Business, Beijing 100070, China.
The 30-Second View
IN SHORT: This paper addresses the core problem of how large, coordinated animal groups form in nature, challenging the classical view of gradual aggregation by proposing a mechanism of rapid subgroup merging driven by topological network dynamics.
Innovation (TL;DR)
- Theory Introduces a topological coordination theory based on time-varying directed interaction networks, identifying a single dominant Strongly Connected Component (SCC) as the driver of group velocity.
- Methodology Proposes the 'velocity inheritance' mechanism, where a trailing subgroup aligns with and inherits the velocity of the leading subgroup's dominant SCC during merging events.
- Biology Provides a unified, mechanistic explanation for multiple empirical features of animal groups, including broad neighbor-distance distributions, directional asymmetry, and narrow-front/wide-rear geometry.
Key conclusions
- Large moving groups form not by slow accumulation but through rapid merging of pre-existing subgroups under high-density conditions, driven by topological network structure.
- The long-term interaction network of any coordinated group contains a single dominant SCC that dictates the collective velocity (speed and direction) for the entire group.
- Repeated subgroup merging, governed by velocity inheritance, predicts that larger groups move more slowly than the mean speed of the original constituent subgroups—a testable hypothesis for existing 3D tracking datasets.
Abstract: Large animal groups—bird flocks, fish schools, insect swarms—are often assumed to form by gradual aggregation of sparsely distributed individuals. Using a mathematically precise framework based on time-varying directed interaction networks, we show that this widely held view is incomplete. The theory demonstrates that large moving groups do not arise by slow accumulation; instead, they emerge through the rapid merging of multiple pre-existing subgroups that are simultaneously activated under high-density conditions. The key mechanism is topological: the long-term interaction structure of any moving group contains a single dominant strongly connected component (SCC). This dominant SCC determines the collective velocity—both speed and direction—of the entire group. When two subgroups encounter one another, the trailing subgroup aligns with—and ultimately inherits—the velocity of the dominant SCC of the leading subgroup. Repeated merging events naturally generate large groups whose speed is predicted to be lower than the mean speed of the original subgroups. The same dynamics explain several universal empirical features: broad neighbour-distance distributions, directional asymmetry in neighbour selection, and the characteristic narrow-front, wide-rear geometry of real flocks. The framework yields testable predictions for STARFLAG-style 3D datasets, offering a unified explanation for the formation, maintenance, and geometry of coordinated animal groups.