Paper List
-
STAR-GO: Improving Protein Function Prediction by Learning to Hierarchically Integrate Ontology-Informed Semantic Embeddings
This paper addresses the core challenge of generalizing protein function prediction to unseen or newly introduced Gene Ontology (GO) terms by overcomi...
-
Incorporating indel channels into average-case analysis of seed-chain-extend
This paper addresses the core pain point of bridging the theoretical gap for the widely used seed-chain-extend heuristic by providing the first rigoro...
-
Competition, stability, and functionality in excitatory-inhibitory neural circuits
This paper addresses the core challenge of extending interpretable energy-based frameworks to biologically realistic asymmetric neural networks, where...
-
Enhancing Clinical Note Generation with ICD-10, Clinical Ontology Knowledge Graphs, and Chain-of-Thought Prompting Using GPT-4
This paper addresses the core challenge of generating accurate and clinically relevant patient notes from sparse inputs (ICD codes and basic demograph...
-
Hypothesis-Based Particle Detection for Accurate Nanoparticle Counting and Digital Diagnostics
This paper addresses the core challenge of achieving accurate, interpretable, and training-free nanoparticle counting in digital diagnostic assays, wh...
-
MCP-AI: Protocol-Driven Intelligence Framework for Autonomous Reasoning in Healthcare
This paper addresses the critical gap in healthcare AI systems that lack contextual reasoning, long-term state management, and verifiable workflows by...
-
Model Gateway: Model Management Platform for Model-Driven Drug Discovery
This paper addresses the critical bottleneck of fragmented, ad-hoc model management in pharmaceutical research by providing a centralized, scalable ML...
-
Tree Thinking in the Genomic Era: Unifying Models Across Cells, Populations, and Species
This paper addresses the fragmentation of tree-based inference methods across biological scales by identifying shared algorithmic principles and stati...
Translating Measures onto Mechanisms: The Cognitive Relevance of Higher-Order Information
University of Amsterdam | University of Cambridge | Queen Mary University of London | Imperial College London | University of Vermont | Indiana University | University of Glasgow | Universidad Catolica del Maule | University of Helsinki
The 30-Second View
IN SHORT: This review addresses the core challenge of translating abstract higher-order information theory metrics (e.g., synergy, redundancy) into defensible, mechanistic explanations for cognitive function in neuroscience.
Innovation (TL;DR)
- Methodology Systematizes Shannon-based multivariate metrics (e.g., Total Correlation, Dual Total Correlation, O-information) into a unified framework defined by two independent axes: interaction strength and redundancy-synergy balance.
- Theory Proposes that a balanced layering of synergistic integration and redundant broadcasting optimizes multiscale complexity, formalizing a fundamental computation-communication tradeoff in neural systems.
- Methodology Provides a pragmatic guide for applying Partial Information Decomposition (PID) to neural data, emphasizing the critical conceptual and practical consequences of choosing a specific redundancy function.
Key conclusions
- Higher-order dependence in multivariate systems can be parsimoniously characterized by two largely independent axes: interaction strength (e.g., quantified by S-information) and redundancy-synergy balance (e.g., quantified by O-information).
- Prototypical systems demonstrate this duality: a purely redundant COPY distribution yields O-information = +1 bit, while a purely synergistic XOR distribution yields O-information = -1 bit, despite both having an S-information of 3 bits.
- The balanced integration of synergistic (head-to-head) and redundant (tail-to-tail) information motifs is proposed as a mechanism optimizing multiscale complexity, formalizing a tradeoff critical for cognitive function.
Abstract: Higher–order information theory has become a rapidly growing toolkit in computational neuroscience, motivated by the idea that multivariate dependencies can reveal aspects of neural computation and communication invisible to pairwise analyses. Yet functional interpretations of synergy and redundancy often outpace principled arguments for how statistical quantities map onto mechanistic cognitive processes. Here we review the main families of higher-order measures with the explicit goal of translating mathematical properties into defensible mechanistic inferences. Firstly, we systematize Shannon-based multivariate metrics and demonstrate that higher-order dependence is parsimoniously characterized by two largely independent axes: interaction strength and redundancy-synergy balance. We argue that balanced layering of synergistic integration and redundant broadcasting optimizes multiscale complexity, formalizing a computation-communication tradeoff. We then examine the partial information decomposition and outline pragmatic considerations for its deployment in neural data. Equipped with the relevant mathematical essentials, we connect redundancy-synergy balance to cognitive function by progressively embedding their mathematical properties in real-world constraints, starting with small synthetic systems before gradually building up to neuroimaging. We close by identifying key future directions for mechanistic insight: cross-scale bridging, intervention-based validation, and thermodynamically grounded unification of information dynamics.